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Projection operator approach to constrained systems
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Belgium

Received 16 July 1996

Abstract. Recently, having reconsidered the reproducing kernel for gauge-invariant states
which involves the projection operator onto the reduced Hilbert space of physical states, John
Klauder has shown how the phase space coherent state path integral quantization of constrained
systems avoids any gauge-fixing conditions, and leads to a specific measure for the integration
over Lagrange multipliers. Here, it is pointed out that independently of the coherent state
formulation, this approach is also devoid of any Gribov problems and always provides for
an effectively admissible integration over all gauge orbits of gauge-invariant systems. This
important aspect of Klauder’s reappraisal of the physical reproducing kernel is explicitly
confirmed by two simple examples.

1. Introduction

In a recent paper [1], John Klauder considered the quantization of constrained systems within
the context of phase space coherent states [2], reaching an important conclusion with regards
to the path integral measure for the Lagrange multipliers which are usually introduced in
order to enforce constraints. Based on the projection operator [3–7] onto the reduced
Hilbert space of physical states, Klauder’s analysis does not require gauge-fixing conditions
for first-class constraints, nor Dirac brackets to reduce for second-class constraints, thereby
avoiding the otherwise necessary consideration of potential Gribov problems [8, 9] or loss of
manifest covariance under specific symmetries of the system, as well as the introduction ofδ-
functionals and functional determinants into path integral representations. These latter issues
are typical of the conventional approaches [7, 10, 11] to the quantization of constrained
systems, namely Faddeev’s reduced phase space approach [12], Dirac’s quantization [13]
or the powerful BFV-BRST methods [14]. Nevertheless, by construction, the analysis as
advocated by Klauder must lead to gauge-invariant observables to which each of the gauge
equivalence classes of the possible configurations of the system can contribute once and
only once. This is to be constrasted with the situation in the conventional approaches for
which such a result is achieved only for ‘admissible’ gauge-fixing conditions, namely those
which are free of Gribov problems [8, 9, 11]. It is only for the gauge equivalence class of
admissible gauge-fixing conditions that the correct gauge-invariant result is obtained in the
conventional approaches [11, 15, 16].

It is obviously important to provide explicit examples confirming the analysis as
advocated by Klauder for the reproducing kernel or propagator of physical gauge-invariant
states. This may be done by comparing the expressions to which that analysis leads to
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well established results in the case of some constrained systems. Klauder’s approach [1]
emphasizes the path integral representation of quantum amplitudes using phase space
coherent states. In the present paper, the conclusions reached in [1] are abstracted from the
specific context of phase space coherent states, and are considered from the operator point
of view. Specifically, the fact that the point of view as advocated by Klauder, based on
the physical projection operator, avoids the necessity of gauge fixing but nevertheless leads
to gauge-invariant results associated with what would be an admissible choice of gauge
fixing in the conventional approaches (whether such a choice is possible or not), is checked
explicitly by way of two simple examples, for which fully satisfactory results are obtained.
Such a conclusion, which must hold in general, is only implicit in [1].

The outline of the paper is as follows. In the section 2, the physical projector onto the
reduced Hilbert space, which plays such a prominent role in Klauder’s analysis, is briefly
described in the operator context. Sections 3 and 4 then apply the general discussion to
two examples in Minkowski spacetime, namely the free relativistic scalar particle and pure
Yang–Mills theory in 0+ 1 dimensions. Finally, some additional comments are presented
in section 5.

2. The physical projector and physical propagator

Klauder’s analysis [1] within the coherent state approach to quantization involves the
projection operator [3–7]E onto the subspace of states annihilated by the constraints,
namely the reduced Hilbert space of physical states. This operator may be introduced in the
following way. Although the discussion can be extended to more general situations [1], for
the sake of simplicity let us consider a constrained system with Grassmann even degrees
of freedom and first-class constraints only whose algebra is closed [7, 11]. Phase space
degrees of freedom(qn, pn) take values over the entire real line and possess the canonical
Poisson bracket structure. The closed algebra of the first-class constraintsφα(q, p), together
with the first-class HamiltonianH0(q, p), is given by{
φα(q, p), φβ(q, p)

} = Cαβ
γ φγ (q, p) {H0(q, p), φα(q, p)} = Cα

β φβ(q, p) . (1)

Here,Cαβγ andCαβ are specific constant structure coefficients which determine the closed
algebra of connected local Hamiltonian gauge transformations of the system.

Consequently, time evolution of the system follows from the first-order action

S =
∫

dt
[
q̇npn −HT (q, p)

]
(2)

the total Hamiltonian being given by

HT (q, p; λ) = H0(q, p)+ λα φα(q, p) (3)

where the quantitiesλα(t) are arbitrary time dependent Lagrange multipliers for the first-
class constraints. These Lagrange multipliers parametrize the local Hamiltonian gauge
freedom of the system associated with the constraints. In particular, local Hamiltonian
gauge transformations are given by

δε q
n = {

qn , φε(q, p)
}

δε pn = {pn , φε(q, p)}
δε λ

α = ε̇α + λγ εβ Cβγ
α − εβ Cβ

α

(4)

where the gauge generator is defined in terms of infinitesimal functionsεα(t) by the
combinationφε(q, p) = εα φα(q, p). These transformations provide the basis for an analysis



Projection operator approach to constrained systems 605

of the space of gauge orbits of the system in its Hamiltonian formulation, and for a discussion
of the possibility of admissible gauge-fixing conditions, or otherwise, of Gribov problems
either of the first or second type, or both [11]. Such issues must be addressed on a case-
by-case basis.

Let us now consider the quantized system. Namely, let us assume that a choice of
quantum operator ordering and of inner product on the space of states is possible such that
the quantum algebra of constraints between themselves and with the Hamiltonian retains
the same form (1) as at the classical level, and such that quantum observables obey the
appropriate self-adjoint properties. With the quantum system defined from its classical
counterpart in this manner, physical or gauge-invariant states (at least invariant under those
gauge transformations continuously connected to the identity transformation) are defined by
the condition

φ̂α |physical〉 = 0 . (5)

Time evolution of the system is induced by the total quantum HamiltonianĤT via the
time-ordered propagator†

S(t2, t1) = T exp

(
−i

∫ t2

t1

dt ĤT

)
(6)

which thus involves the arbitrary time dependent functionsλα(t). Obviously, the action
of the total Hamiltonian ĤT on any physical state leads to another physical state which
is independent of the choice of Lagrange multipliersλα(t), this being not necessarily a
property shared by the propagator itself. Consequently, the evolution operatorS(t2, t1) also
propagates gaugevariant or unphysical states in a gauge dependent manner.

In order to construct a propagator for physical states only, let us consider [3–7]
the projection operator onto the subspace of states annihilated by the first-class quantum
constraints. Denoting this operator byE , with the properties

E2 = E E† = E (7)

the physical projector is given by [1]‡

E =
∫

dU(θα) exp
(−iθαφ̂α

)
(8)

where dU(θα) is a suitable integration measure over the space of transformations generated
by the first-class constraints, such thatE does possess the properties in (7). In particular,
note how the conditionE2 = E determines the normalization of the integration measure
dU(θα). For example, if these constraints generate a compact Lie group, dU is the associated
normalized Haar measure over that group§.

Given the physical projectorE , the physical propagatorfor gauge-invariant states is
then constructed to be [1, 5–7]‖

Sphys(t2, t1) = exp
(−iĤ0(t2 − t1)

) E . (9)

† Units such that ¯h = 1 are assumed throughout.
‡ When the spectrum of the constraintsφ̂α is continuous, a proper definition of the reduced physical Hilbert space
requires some form of theδ-limiting procedure discussed for example in [1].
§ To be precise, first-class constraints generate only the connected component of the Lie group, whereas the full
gauge group of the system may be different from its universal covering group. Such a situation may properly be
implemented by appropriatedly modifying the integration domain over the group parametersθα in the definition
of the projectorE .
‖ Note that this construction is reminiscent of Feynman’s tree theorem [17].
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Since the first-class constraints form a closed algebra among themselves and with the
canonical HamiltonianĤ0, note that one may also write

Sphys(t2, t1) = E exp
(−iĤ0(t2 − t1)

) E = E exp
(−iEĤ0E(t2 − t1)

) E . (10)

In particular, the latter of these two expressions is the one that is relevant more generally
for systems which include second-class constraints as well [1]. In this form, it should be
clear that the physical propagator does indeed propagate as intermediate states physical
states only, and as external states their gauge-invariant components only. Moreover, this
propagator obeys [1] the convolution property required of an evolution operator

Sphys(t3, t2) Sphys(t2, t1) = Sphys(t3, t1) . (11)

Once the choice of physical evolution operator is specified, it is of course possible to
compute its matrix elements for different choices of quantum states. The latter may include,
for example, configuration space eigenstates, momentum space eigenstates, or phase space
coherent states. Whatever the choice, it is then also possible to develop a path integral
representation of such matrix elements in the usual manner, by inserting resolutions of the
identity operator11 in terms of the chosen set of states in a stepwise discretized version
of the evolution operator. Since the quantized system is assumed to have been completely
defined at the operator level, including the projection operatorE , one obviously obtains a
path integral representation in which the measure of all phase space degrees of freedom
and Lagrange multiplier variables is uniquely determined and well defined. In particular,
the propertyE2 = E in (7) of the physical projectorE uniquely determines the integration
measure over the Lagrange multipliers in a path integral representation of matrix elements
of the physical evolution operator [1].

This is achieved in spite of the absence of any choice of gauge fixing, thereby avoiding
any potential Gribov problems in the evaluation of quantities which are gauge-invariant
observables by construction. Indeed in the conventional approaches, even though gauge
fixing can be effected in a manner which necessarily ensures the gauge invariance of
expressions, nevertheless it is only for admissible gauge-fixing conditions that physically
consistent results are obtained for gauge-invariant observables.

In contrast, the choice of physical evolution operator in (9) avoids any such difficulties at
once. No choice of gauge-fixing condition has to be effected, hence no issue of a possible
Gribov problem can arise. Nevertheless, gauge-invariant results are obtained, owing to
the physical projectorE , by properly integrating over the space of gauge transformations.
Moreover, not only does one obtain gauge-invariant results, but in addition these results
must necessarily be such as to include properly the contribution of each of the gauge
inequivalent configurations of the system once and only once. There is no need to go into
the development of a BRST-invariant approach in order to maintain a formulation of the
system which is both at the same time manifestly gauge invariant and covariant under other
specific symmetries.

In [1], emphasizing the path integral point of view within the phase space coherent state
approach, Klauder illustrated through a series of examples how the projector property of the
operatorE does indeed determine the path integral measure over the Lagrange multipliers.
In the present paper, and within the abstract operator approach, it is the absence of Gribov
problems and the admissibility of the effective integration over the space of gauge orbits
of such gauge-invariant systems which are pointed out, and illustrated explicitly by way of
two simple examples. Indeed, these important facts must again result from the properties
of the physical projectorE .
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3. The relativistic scalar particle

Consider the free relativistic scalar particle of massm > 0 propagating in a Minkowski
spacetime ofD dimensions. The manifestly reparametrization invariant Hamiltonian
formulation of this system is well known [18]. Using the notations and spacetime metric
conventions of [11], with in addition a choice of units such thatc = 1, the canonically
conjugate degrees of freedom of the system are the spacetime coordinatesxµ(τ) and
energy-momentumPµ(τ) (µ = 0, 1, . . . , D− 1) of the particle, the canonical Hamiltonian
H0 vanishes identically as befits a reparametrization invariant dynamics, and the first-
class constraint related to the connected gauge invariance of the system under orientation
preserving reparametrizations of the world-line coordinateτ is

φ = 1
2

[
P 2 +m2

]
. (12)

Consequently, the total Hamiltonian of the system is simply

HT = λφ = 1
2λ

[
P 2 +m2

]
(13)

whereλ(τ) is the Lagrange multiplier associated with the connected Hamiltonian gauge
freedom generated byφ.

It may be shown [11] that the space of gauge inequivalent configurations of the system
is characterized by the world-line metric Teichmüller parameterγ defined by

γ =
∫ τ2

τ1

dτ λ(τ) (14)

where the interval [τ1, τ2] is related to a choice of boundary conditions. In particular,
the parameterγ is invariant under the orientation preserving reparametrizations of the
world-line, i.e. the connected gauge transformations of the system, generated by the
first-class constraintφ. Under orientation reversing reparametrizations however, the
Teichm̈uller parameter changes sign. Therefore, when describing the oriented scalar particle
invariant under both classes of transformations, corresponding to a particle distinct from its
antiparticle, the Teichm̈uller parameter must be restricted to a fundamental domain of the
modular group [11], say the intervalγ ∈ [0,+∞[ .

Quantization of this system is straightforward enough. One has the fundamental operator
degrees of freedom̂xµ and P̂µ (µ = 0, 1, . . . , D − 1) with the canonical commutation
relations [

x̂µ , P̂ν
] = iδµν . (15)

The first-class quantum constraint is simply

φ̂ = 1
2

[
P̂ 2 +m2

]
(16)

while the generator of time evolution is the total quantum Hamitonian

ĤT = λ φ̂ = 1
2 λ

[
P̂ 2 +m2

]
. (17)

Since the first-class Hamiltonian̂H0 vanishes identically for this system, the physical
time evolution operator of the system simply reduces to the projection operatorE itself,
which in the present case is defined by

Sphys(τf , τi) = E =
∫ +∞

−∞
dγ exp

(− 1
2iγ (P̂ 2 +m2)

) sin(δγ )

πγ
0< δ � 1 (18)

with a suitableδ → 0 limit reserved to a later stage [1]. Note how the integration
parameterγ is indeed to be identified with the Teichmüller parameter of the system



608 J Govaerts

defined in (14), on the basis of the total Hamiltonian in (17).A priori, the integration
measure over the parameterγ could be any function ofγ , sinceγ is invariant under local
world-line reparametrizations. However, the requirements in (7) necessary for a projection
operator imply in fact that the integration measure overγ should be precisely of the
form as specified in (18) for someδ > 0. In other words, the requirement thatE be
a projection operator essentially onto the sector of physical—or locally gauge-invariant—
states effectively determines the integration measure over Teichmüller and modular space.

Given the desired projection operator, its matrix elements can be computed in a
straightforward manner. Let us first consider the configuration space matrix elements,
namely

P(x
µ

i → x
µ

f ) ≡ 〈xµf |E |xµi 〉 (19)

where the states|xµ〉 define the complete orthonormalized basis of eigenvectors of the
position operatorŝxµ. A similar orthonormalized basis of momentum eigenstates|pµ〉 exists
for the momentum operatorŝPµ. These two bases are related through the transformation
rule

〈pµ|xµ〉 = (2π)−D/2 exp

(
−ix · p

)
(20)

in which the invariant inner product in the exponential is obviously the one defined by the
Minkowski metric on spacetime. Using this rule, as well as the spectral decomposition of
the identity operator11 in terms of the momentum eigenstates|pµ〉, it is straightforward to
obtain for the configuration space matrix elements of the physical evolution operator

SF(x
µ

i → x
µ

f ) ≡ lim
δ→0

π

2δ
P (x

µ

i → x
µ

f )

= lim
δ→0

π

2δ

∫
(∞)

dDpµ

(2π)D
exp

(
i(xf − xi) · p

)

×
∫ +∞

−∞
dγ exp

(
− 1

2iγ (p2 +m2)

)
sin(δγ )

πγ

= 1

2

∫
(∞)

dDpµ

(2π)D
exp

(
i(xf − xi) · p

) ∫ +∞

−∞
dγ exp

(
− 1

2iγ (p2 +m2)

)
(21)

where the limitδ → 0 is taken in the way discussed in [1]. The choice of normalization
of the functionSF(x

µ

i → x
µ

f ) is such that when restricting the modular parameterγ to
the range [0,+∞] (corresponding to the description of the oriented particle), the function
SF(x

µ

i → x
µ

f ) coincides with the Feynman propagator for the scalar particle.
Up to a constant factor, note that it is only with the integration measure over the

parameterγ which appears in (21) that the Feynman propagator is obtained in that manner.
Any other non-constant integration measure overγ , even though gauge invariant for local
and possibly global gauge transformations (i.e for orientation preserving and reversing
world-line reparametrizations, respectively), would not lead to the Feynman propagator,
and would thus introduce a Gribov problem of some type [11]. In the present instance,
as was pointed out above, it is precisely the fact thatE is a projection operator with the
properties in (7) which ensures the admissible integration measure over modular space,
devoid of any Gribov problem. In addition, the appropriate physical propagation of gauge-
invariant (i.e. reparametrization invariant) states is indeed recovered, in spite of the fact
that no gauge fixing of the system is effected. Compared with the detailed calculation of
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the physical propagatorSF(x
µ

i → x
µ

f ) using Hamiltonian BRST techniques [11, 19], it is
clear that the projection operator approach is far more efficient and leads immediately to
the correct result [11].

In view of the basis for the analysis of [1], let us also compute the phase space coherent
state† matrix elements of the physical evolution operatorE . These coherent states are
defined by

|Pµ, xµ〉 = exp

(
iα(Pµ, x

µ)

)
exp

(−ixµP̂µ
)

exp

(
iPµx̂

µ

)
|η〉 (22)

with an arbitrary phase factorα(Pµ, xµ) and normalized fiducial state|η〉. It is then a simple
exercise to compute the coherent state matrix elements of the projectorE :

〈P2, x2|E |P1, x1〉 = exp

(
−iα(P2, x2)

)
exp

(
iα(P1, x1)

)

×
∫
(∞)

dDpµ exp

(
i(x2 − x1) · p

)
η∗(p − P2) η(p − P1)

×
∫ +∞

−∞
dγ exp

(− 1
2γ (p

2 +m2)
) sin(δγ )

πγ
(23)

whereη(Pµ) is the momentum space wavefunction of the fiducial state|η〉, namely the
quantityη(Pµ) = 〈Pµ|η〉.

Given this expression and the resolution of the identity operator11 in terms of the
overcomplete basis of phase space coherent states, it is straightforward to verify that the
configuration space matrix elements of the projection operatorE are again given by (21),
independently of the choice of fiducial state|η〉 used in the definition of coherent states.
This check uses the relation

P(x
µ

i → x
µ

f ) =
∫
(∞)

dDP2dDx2

(2π)D
dDP1dDx1

(2π)D
〈xµf |P2, x2〉〈P2, x2|E |P1, x1〉〈P1, x1|xµi 〉 (24)

as well as the overlap functions〈yµ|P, x〉 which are easily obtained from (22) and (20).

4. Pure Yang–Mills theory in 0+ 1 dimensions

Let us consider a pure Yang–Mills theory in a Minkowski spacetime of 1+ 1 dimensions,
based on an arbitrary simple compact Lie groupG of dimensionDG and of rank`. The
Lie algebra generatorsT a (a = 1, 2, . . . , DG) obey the commutation relations

[T a, T b] = if abcT c (25)

with real, fully antisymmetric structure coefficientsf abc. In particular, the adjoint
representation of dimensionDG possesses the matrix representation

(
T aAdj

)bc = −if abc. The
gauge vector potential components are denotedAaµ (µ = 0, 1), while the gauge coupling
constant is denoted byg, so that the gauge field strength isFaµν = ∂µA

a
ν−∂νAaµ+gf abcAbµAcν .

† In [1], the initial example of a first-class constraint considers the motion of a particle on a hypersphere with
vanishing Hamiltonian. In [1] Klauder discusses how the associated coherent states are related to the euclidian
group which appears in that context. The relativistic particle is similar in that the constraint enforces themomentum
to lie on a hypersphere of Minkowski signature. One may thus raise the question of the characterization of the
group of transformations in momentum spaceand in spacetimerelated to the phase space coherent state matrix
elements of the evolution operator for the relativistic particle, along the lines of the first example in [1, section 6].
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Given these data and following the discussion of [5], let us now consider the dimensional
reduction of this pure Yang–Mills theory to 0+ 1 dimensions, by retaining only the∂1 zero
modes of the fields in space, namely by assuming that the fieldsAaµ(t = x0, x1) are now
independent of the space coordinatex1. In order to avoid any confusion, let us then
distinguish the time and space components of the gauge fields as follows:

φa(t) = Aa0(t) Aa(t) = Aa1(t) (26)

so that the only non-vanishing component of the field strength is now given by

Fa01 = Ȧa + gf abcφbAc . (27)

Consequently, the dimensionally reduced system is described by the Lagrangian

L = 1
2

[
Ȧa + gf abcφbAc

]2 − 1
2m

2(Aa)2 (28)

where a gauge-invariant mass term for theAa degrees of freedom has been added. Indeed,
the reduced system possesses the following gauge invariance:

A′aT a = U AaT a U−1 φ′aT a = U φaT a U−1 + i

g
U

d

dt
U−1 (29)

whereU(t) = exp

(
−igθa(t)T a

)
is an arbitrary time dependent transformation inG. Quite

obviously, the mass term does not spoil this gauge invariance. As will become clear later
on, the mass term serves the purpose of a regularization of the quantized theory.

Owing to the absence of a dependence on the time derivative of the degrees of freedom
φa in the above Lagrangian, the present is a constrained system possessing a gauge
invariance under the simple compact Lie groupG. As a matter of fact, the full gauge
invariance of the system, including connected (i.e. local) and non-connected (i.e. global)
gauge transformations is not the universal covering groupGuniv generated by the above
algebra, but rather the simple compact Lie groupG = Guniv/C, whereC is the maximal
torus or center of the groupGuniv. Indeed, the degrees of freedomφa andAa transform
under the adjoint representation ofG or Guniv.

The Hamiltonian formulation

The usual analysis of constraints starting from the Lagrangian (28) can be applied
straightforwardly; the details are not presented here. Let us only point out that the analysis
follows the same lines [11] as for Yang–Mills theory in a Minkowski spacetime of dimension
(D− 1)+ 1, and that some of the degrees of freedom, namely the sector of the coordinates
φa and their conjugate momenta, may be decoupled by considering the so-called [11]
fundamental Hamiltonian descriptionof the system.

In the present instance, this fundamental description is based on the phase space degrees
of freedom, that is the coordinatesAa(t) and their conjugate momentaπa(t), obeying the
algebra of Poisson brackets

{Aa(t), πb(t)} = δab . (30)

The system possesses first-class constraints only, namely the gauge charges generating the
local gauge transformations, which in fact also enforce Gauss’ law in the present case:

Qa = gf abcAbπc (31)

whose closed algebra is simply that of the Lie algebra of the gauge groupG

{Qa(t),Qb(t)} = gf abcQc(t) . (32)
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Finally, the first-class Hamiltonian is simply

H0 = 1
2

(
πa

)2 + 1
2m

2
(
Aa

)2
(33)

so that the total Hamiltonian generating the time evolution of the system is

HT = 1
2

(
πa

)2 + 1
2m

2
(
Aa

)2 − φaQa . (34)

Here, the variablesφa are Lagrange multipliers† for the first-class constraintsQa, which,
in fact, may be identified with the original gauge degrees of freedom asφa = Aa0, the latter
thus also parametrizing the local gauge freedom of the system.

Given the total Hamiltonian, the Hamiltonian equations of motion are readily derived

Ȧa = πa − gf abcφbAc π̇a = −gf abcφbπc −m2Aa (35)

whose solutions thus involve the arbitrary Lagrange multipliersφa. Similarly, local
Hamiltonian gauge transformations generated by the first-class constraintsQa read

δεA
a = {Aa,Qε} = gf abcεbAc

δεπ
a = {πa,Qε} = gf abcεbπc

δεφ
a = −ε̇a + gf abcεbφc

(36)

with

Qε = εaQa (37)

the εa(t) being arbitrary infinitesimal functions of time. It is a straightforward exercise to
check that the first-order Hamiltonian Lagrangian

LHamilt = Ȧaπa −HT (38)

is indeed invariant under these transformations, since

δε(Ȧ
aπa) = ε̇aQa δεHT = ε̇aQa . (39)

In fact, it is possible even to determine the Hamiltonian gauge transformations to all
orders, and not only in linearized form. For this purpose, let us define the finite gauge
transformation in the groupG:

U(t) = exp

(
−igθa(t)T a

)
. (40)

The gauge transformed Hamiltonian degrees of freedom are then determined from

A′aT a = UAaT aU−1 π ′aT a = UπaT aU−1

φ′aT a = UφaT aU−1 + i

g
U

d

dt
U−1 .

(41)

Consequently, complete gauge fixing in this system is possible. Indeed, consider a
certain configuration for(Aa, πa, φa) and define the gauge transformation

U(t, t0) = T exp

(
−ig

∫ t

t0

dt ′ φa(t ′)T a
)
. (42)

Then the transformed Lagrange multipliers vanish identically

φ′a(t) = 0 (43)

while no additional gauge transformation exists which would leave this last identity invariant,
given specific boundary conditions onAa and/orπa.

† In fact, the variablesφa introduced here correspond to the opposite of the Lagrange multipliersλa introduced
in section 2 in the general case, namelyφa = −λa .
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Quantization and physical states

Let us now consider the quantized system. Given the expressions forH0 andQa at the
classical level, the corresponding operators are simply defined by

Ĥ0 = 1
2

[(
π̂ a

)2 +m2
(
Âa

)2
]

(44)

and

Q̂a = gf abcÂbπ̂ c . (45)

Due to the fundamental commutation relations[
Âa(t), π̂ b(t)

] = iδab (46)

and the complete antisymmetry of the structure coefficientsf abc, the operatorsĤ0 andQ̂a

as defined above do not suffer quantum ordering ambiguities.
In view of the analogy with the ordinary harmonic oscillator, it is useful to introduce

the Fock representation of the system, in terms of the operators

αa =
√
m

2

[
Âa + i

m
π̂a

]
αa

† =
√
m

2

[
Âa − i

m
π̂a

]
(47)

or

Âa = αa + αa†
√

2m
π̂a = −i

√
m

2

[
αa − αa

†] (48)

such that [
αa, αb

†] = δab . (49)

The HamiltonianĤ0 then reads

Ĥ0 = 1
2m

[
αaαa

† + αa
†
αa

] = m
[
αa

†
αa + 1

2DG

]
(50)

while the generators of the local gauge transformations become

Q̂a = −igf abcαb
†
αc . (51)

Obviously, in particular one has[
Q̂a, Q̂b

] = igf abcQ̂c . (52)

Given the normalized Fock vacuum|0〉
αa|0〉 = 0 〈0|0〉 = 1 (53)

the orthonormalized basis of the Fock space, spanned by

|a1, a2, . . . , an〉 = N(a1, a2, . . . , an) α
a1†
αa2† · · · αan † |0〉 (54)

whereN(a1, a2, . . . , an) is a normalization factor, also diagonalizes the HamiltonianĤ0 of
the system, with

Ĥ0|a1, a2, . . . , an〉 = m(n+ 1
2DG)|a1, a2, . . . , an〉 . (55)

Note that this basis of orthonormalized states is in one-to-one correspondence with all fully
symmetric irreducible representations of the unitary groupSU(DG), whose Young tableaux
reduce to single rows of all possible lengths(n = 0, 1, . . .).

Consider now the subspace of physical states defined by the condition of local gauge
invariance

Q̂a|physical〉 = 0 . (56)
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In view of the structure of the chargeŝQa, it is possible to show [5] that such states are
necessarily all of the form

|n1, . . . , n`〉 = N(n1, . . . , n`)
[
Tr

(
α†)r1 ]n1 · · ·

[
Tr

(
α†)r` ]n` |0〉 . (57)

Here,N(n1, . . . , n`) are normalization factors whose evaluation has to be considered on
a case-by-case basis for every choice of gauge groupG, n1, . . . , n` are arbitrary positive
or vanishing integers,r1, . . . , r` are the degrees of the independent invariant symmetric
polynomials or Casimir operators in the groupG of rank`, and finally, the operatorsα and
α† are defined by

α = αa T a α† = αa
†
T a (58)

the traces in (57) being taken in colour space only.
The orthonormalized states|n1, . . . , n`〉 are gauge singlets, as befits physical states, and

span the entire space of physical states. In addition, they also diagonalize the Hamiltonian
Ĥ0

Ĥ0 |n1, . . . , n`〉 = m
(
n1r1 + · · · + n`r` + 1

2DG

) |n1, . . . , n`〉 . (59)

In the simple case ofG = SU(2) of rank ` = 1, it is straightforward to compute the
normalization factorN(n1), in a manner which should be generalizable to an arbitrary group
G. Let us introduce the operators

N =
3∑
a=1

αa
†
αa N † = N

B† =
3∑
a=1

αa
†
αa

†
B =

3∑
a=1

αaαa

(60)

whose algebra is simply

[N,B] = −2B
[
N,B†] = 2B† [

B,B†] = 4N + 2DG = 4N + 6 . (61)

A simple calculation then leads to the following normalization of the basis|n〉 of the
subspace of physical states

|n〉 =
[

2n n!
n∏
j=1

(2j +DG − 2)

]−1/2 (
B†)n |0〉 (62)

which thus satisfy the relations

〈n|m〉 = δn,m n,m = 0, 1, . . . . (63)

In particular, this result allows one to determine the configuration space wavefunction
representation of physical states. These wavefunctions are defined by

ψn(A
a) ≡ 〈Aa|n〉 (64)

where |Aa〉 are the configuration space orthonormalized eigenstates of the operatorsÂa.
One then obtains

ψn(A
a) =

(m
π

)DG/4 [
2n n! (2n+ 1)!!

]−1/2
(m

2

)n [
3∑
a=1

(
Aa − 1

m

∂

∂Aa

)2
]n

× exp

(
−1

2
m

( 3∑
a=1

Aa
)2)

. (65)

Quite obviously, a similar analysis is possible in the general case of a specific but arbitrary
gauge groupG.
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Physical time evolution of the quantum system

Let us now consider the physical time evolution of the system. According to the discussion
of section 2, the corresponding operator is thus

Sphys(t2, t1) = exp
(−iĤ0 (t2 − t1)

)E = E exp
(−iĤ0(t2 − t1)

) E (66)

where the projection operatorE onto the subspace of physical states is defined by†

E =
∫

dU(θa) exp
(−iθaQ̂a

)
. (67)

Here, dU(θa) is the Haar measure over the gauge groupG, the domain of integration
being chosen according to the groupG rather than its universal covering groupGuniv when
different. Once again, note that this measure is entirely specified by the requirement of the
properties in (7) defining a projector, thereby avoiding at once both issues of gauge fixing
and of the possibility of Gribov problems of the first or second type [11] related to a choice
of gauge fixing‡.

Consider now the matrix element of the evolution operator between some initial and
final states,|ψi〉 and |ψf 〉 respectively, for a time interval [ti , tf ], namely

P(i → f ) = 〈ψf |E exp
(−iĤ0(tf − ti)

)E |ψi〉 . (68)

As seen previously, the states|a1, a2, . . . , an〉 in (54) span a complete orthonormalized basis
of the space of states, including gauge variant ones, whereas the subset|n1, . . . , n`〉 in (57)
determines an orthonormalized basis of the space of physical states. Therefore, one may
write

P(i → f ) =
∞∑
n=0

∑
a1,a2,...,an

∞∑
m=0

∑
b1,b2,...,bm

〈ψf |a1, a2, . . . , an〉

× 〈a1, a2, . . . , an|E exp
(−iĤ0(tf − ti)

)E |b1, b2, . . . , bm〉〈b1, b2, . . . , bm|ψi〉 .
(69)

However, owing to the projection operatorsE to the left and to the right of the exponentiated
Hamiltonian operator, only physical states do contribute to the sums over intermediate states.
In addition, these physical states diagonalize the HamiltonianĤ0, so that one finally obtains

P(i → f ) =
∞∑

n1,...,n`=0

exp

(
−im(n1r1 + · · · + n`r` + 1

2DG)(tf − ti)

)
× 〈ψf |n1, . . . , n`〉〈n1, . . . , n`|ψi〉 . (70)

In conclusion, the physical evolution operator in (66) does indeed propagate as
intermediate states physical states only, and in a manner which is consistent with the
physical spectrum of the system. Moreover, any unphysical component of the external
states, which thus has a vanishing overlap with the intermediate states|n1, . . . , n`〉, is not
propagated by the physical evolution operator. In fact, the matrix elementP(i → f )

vanishes identically whenever either one or both of the external states does not possess
a gauge-invariant component. It is not that gauge variant components of states are not

† In the present case, the spectrum ofQ̂a being discrete, noδ-limiting procedure is required to properly define
the reduced Hilbert space.
‡ Note that the converse result is established in [3], namely that the BRST invariant path integral for an admissible
gauge fixing leads to the Haar measure over the gauge group for the Lagrange multipliers.
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propagated in time in the system, but rather that the physical evolution operator in (66)
does not propagate the gauge variant component of states.

Given the general result in (70), note also that it is possible in principle to compute
any matrix element of the physical evolution operator (66), given the appropriate choice
of initial and final states. For example, using the configuration space wavefunctions of
physical states such as those given in (65) in the case ofSU(2), it is possible to obtain [5]
the configuration space matrix elements of the physical evolution operator. Another possible
choice is that of phase space coherent states.

Phase space coherent states

Finally, let us consider the phase space coherent states defined by

|πa,Ab; η〉 = exp
(
iα(πa,Ab)

)
exp

(−iAaπ̂a
)

exp
(
iπaÂa

) |η〉 (71)

where the choice of normalized fiducial state|η〉 is arbitrary, as well as the phase factor
α(πa,Ab).

Given the physical evolution operator in (66), its phase space coherent state matrix
elements are given by

P(1 → 2) = 〈π2, A2; η|E exp
(−iĤ0(t2 − t1)

)E |π1, A1; η〉 . (72)

Evaluation of this expression requires the calculation of the action of the projectorE being
applied to coherent states, and more specifically the result for

exp
(−iθaQ̂a

) |π,A; η〉 . (73)

Given the parametersθa and the degrees of freedomπa and Aa, let us define the
quantitiesπaθ andAaθ by the relations

AaθT
a = UAaT aU−1 πaθ T

a = UπaT aU−1 (74)

whereU is the finite gauge transformation in the groupG:

U = exp

(
−iθaT a

)
. (75)

Then, it is possible to show that one has

exp
(−iθaQ̂a

) |πa,Ab; η〉 = |πaθ , Abθ ; ηθ 〉 (76)

where the coherent state on the right-hand side is defined as in (71) with the fiducial state
|ηθ 〉 now given by

|ηθ 〉 = exp
(−iθaQ̂a

) |η〉 . (77)

Consequently, the phase space coherent space matrix element in (72) takes the form

P(1 → 2) =
∫

dU(θa2 )
∫

dU(θa1 )

×〈(π2)
a
θ2
, (A2)

a
θ2
; ηθ2| exp

(− 1
2i(t2−t1)[(π̂a)2+m2(Âa)2]

)|(π1)
a
θ1
, (A1)

a
θ1
; ηθ1〉 .

(78)

In view of the integration over the group parametersθa1 andθa2 , it would be reasonable to
believe that only gauge-invariant physical states contribute to this expression as intermediate
states. As shown in (70), this is indeed the case, and the correct spectrum of physical states
is in fact recovered from the time dependence of this expression.
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We shall refrain here from computing (78) explicitly. This should be particularly
simple [5] for the choice|η〉 = |0〉, in which case|ηθ 〉 = |0〉 as well. However, the
expression in (70) seems to be better suited to the purpose of a calculation of (78), since
one then only requires the overlap functions

〈n1, . . . , n`|πa,Ab; η〉 (79)

of the phase space coherent states with the physical states|n1, . . . , n`〉. These functions
may be obtained using the Fock representation of the operatorsÂa and π̂ a.

5. Conclusions

Within the phase space coherent state approach to quantization, Klauder’s analysis [1] of the
reproducing kernel or propagator for physical states in gauge-invariant systems is based on
the physical projector [3–7]E onto the reduced Hilbert space of physical states. As shown in
[1], the path integral measure for the Lagrange multipliers associated with the constraints is
then uniquely determined from the projector propertyE2 = E of this operator, independently
of any gauge-fixing conditions or reduction of second-class constraints. In addition,
Klauder’s approach does not require the introduction in the path integral representation
of gauge-invariant observables of theδ-functionals and functional determinants which are
typical of the conventional approaches to the quantization of constrained systems.

In the present paper, it is pointed out that since the physical propagator constructed
on basis of that projection operator does not necessite gauge-fixing conditions, potential
Gribov problems, which are typical of the conventional approaches to constrained systems,
are avoided from the outset, while the properties of the physical projectorE also ensure
that the physical propagator does indeed lead to the correct physically consistent results for
gauge-invariant observables, by effectively including once and only once the contribution
from each of the inequivalent gauge orbits of the system, as would result from an admissible
choice of gauge-fixing conditions in the conventional approaches. In other words, the role of
the physical projectorE is also to effectively determine the physically consistent integration
measure over the modular space of the system, i.e. the quotient of configuration space or
phase space, including Lagrange multiplier variables, by the gauge group. This important
property of the physical propagator is confirmed explicitly in all these aspects by two simple
examples, namely the free relativistic scalar particle and pure Yang–Mills theory in 0+ 1
dimensions.

The analysis is performed within the abstract operator formulation of a quantized
constrained system with first-class constraints only whose algebra is closed. Klauder’s
original reappraisal of the projected physical propagator is presented [1] within the context
of the phase space coherent state path integral quantization of constrained systems. As is
well know, the operator approach can be used to develop and justify the path integral one,
thereby specifying unambiguously the integration measures over the phase space degrees
of freedom and Lagrange multiplier variables in as far as the quantized system itself is
uniquely and well defined at the operator level. In addition, the formulation of the physical
projection operatorE is such that manifest gauge invariance and covariance under other
specific symmetries that the system may possess is maintained throughout. There is no
need to develop a BRST description with its additional auxiliary and ghost degrees of
freedom to achieve that aim, while the BRST approach may also be fraught with Gribov
problems.

Clearly, based on the insight provided by Klauder’s analysis, it would be extremely
interesting to apply a similar approach to other gauge-invariant systems of physical interest,
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and see how the corresponding results compare with the understanding which has developed
on the basis of the conventional approaches. Before considering more realistic theories in
3+1 dimensions, obvious candidates would be the Yang–Mills and Chern–Simons theories,
as well as quantum gravity theories in 1+ 1 and 2+ 1 dimensions, the quantum gravity
theories in 1+ 1 dimensions, including of course string theories.
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